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Abstract Protein functions are determined by their three-dimensional structures and the folded 3-D structure is in
turn governed by the primary structure and post-translational modifications the protein undergoes during synthesis and
transport. Defining protein functions in vivo in the cellular and extracellular environments is made very difficult in the
presence of other molecules. However, the modifications taking place during and after protein folding are determined by
the modification potential of amino acids and not by the primary structure or sequence. These post-translational
modifications, like phosphorylation and O-linked N-acetylglucosamine (O-GlcNAc) modifications, are dynamic and
result in temporary conformational changes that regulate many functions of the protein. Computer-assisted studies can
help determining protein functions by assessing the modification potentials of a given protein. Integrins are important
membrane receptors involved in bi-directional (outside-in and inside-out) signaling events. The b3 integrin family,
including, aIIbb3 and avb3, has been studied for its role in platelet aggregation during clot formation and clot retraction
based on hydroxyl group modification by phosphate and GlcNAc on Ser, Thr, or Tyr and their interplay on Ser and Thr in
the cytoplasmic domain of the b3 subunit. An antagonistic role of phosphate and GlcNAc interplay at Thr758 for
controlling both inside-out and outside-in signaling events is proposed. Additionally, interplay of GlcNAc and phosphate
at Ser752 has been proposed to control activation and inactivation of integrin-associated Src kinases. This study describes
the multifunctional behavior of integrins based on their modification potential at hydroxyl groups of amino acids as a
source of interplay. J. Cell. Biochem. 99: 706–718, 2006. � 2006 Wiley-Liss, Inc.
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Multifunctional proteins are involved in
diverse and often unrelated functions and may
perform different tasks in different biological
environments [Jeffery, 1999]. It is usual for
proteins to perform multiple functions in the
context of their intra- and extra-cellular inter-

actions. Reversible phosphorylations induce
changes in the secondary and tertiary struc-
tures and control the modular interactions of
proteins [Li et al., 2004]. In addition, phosphor-
ylation and alternatively glycosylation control
the functional behavior of a growing list of
proteins [Cheng and Hart, 2000]. For instance
promotion of proteolysis may result from phos-
phorylation of serine/threonine or tyrosine
residues [Elorza et al., 2003]. Alternatively,
resistance to proteolysis may result from the
presence of carboxyl or sulfate groups in
glycoproteins [Nasir-ud-Din et al., 2003]. Evo-
lutionarily conserved motifs and residues are
often involved in performing vital functions of
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the proteins [La et al., 2005]. Cytoplasmic
domains of the b3 chain contains seven Thr
and one Ser residues that are generally con-
served. Thus the cytoplasmic domain of integrin
b3 chain is important in integrin signaling
because of modifications occurring at conserved
residue(s).
The recognition events and functions of

proteins depend on their precise three-dimen-
sional shape as well as on the presence of
specific modifications [Bork et al., 1998; Att-
wood, 2000]. Theknowledge of the 3-D structure
of proteins is a prerequisite for the full under-
standing of their involvement in biological
processes. However, determination of the 3-D
structure in vivo is difficult, as a given config-
uration is constantly modified by intra- and
inter-molecular interactions occurring with
proteins present in body fluids or in the cell.
Most of the structural data available in protein
databases have been determined by X-ray
crystallography or NMR, but these structural
determination methods provide information
that is only partially relevant to the dynamic
behavior of proteins in vivo. The study of the
molecular interactions between multifunc-
tional proteins in vivo is likely to be facilitated
by computer-assisted techniques that assess the
modification potential of the proteins involved.
Integrins are a family of cell adhesion mole-

cules, which act as two-way signaling receptors
to promote the attachment of cells to the
extracellular matrix and for cell–cell interac-
tions [Ugarova et al., 1998; Yokoyama et al.,
2000]. These functions are implicated in many
cell-cell and cell-matrix adhesion processes
in the context of immune responses, tumor
metastasis, atherosclerosis, and thrombosis.
The integrin family is composed of over 18 a
and 8 b subunits expressed in at least 24
different ab heterodimeric combinations. Integ-
rins facilitate cellular adhesion and migration
on extracellular matrix proteins located within
the intercellular spaces and basement mem-
branes. The heterodimeric combination of b3
integrin takes place only with aIIb and av
subunits. The family of b3 integrins thus results
in aIIbb3 and avb3 complete integrins.
Integrin avb3 binds a wide variety of extra-

cellular matrix proteins including vitronectin,
fibronectin, fibrinogen, laminin, collagen, von
Willebrand factor, osteopontin etc. [Eliceiri and
Cheresh, 2000]. Despite its promiscuous ligand
binding behavior, avb3 is mainly expressed in

vascular, intestinal, and uterine smoothmuscle
cells [Brem et al., 1994]. This receptor has also
been found on activated leukocytes, macro-
phages, and osteoclasts, where it regulates bone
resorption [McHugh et al., 2000]. Most promi-
nently, avb3 becomes upregulated on endothe-
lial cells exposed to hypoxia and cytokines such
as VEGF-A [Suzuma et al., 1998; Walton et al.,
2000] and was found to be overexpressed in
tumor-associated vessels and atherosclerotic
plaques [Hoshiga et al., 1995].

The integrin aIIbb3 mediates platelet adhe-
sion, spreading, and aggregation and thus plays
a critical role in thrombosis and hemostasis
[Ferrara, 2000]. In normal circulating platelets,
the integrin aIIbb3 is in a resting state with low
affinity for fibrinogen and vonWillebrand factor
(vWF). At sites of vascular injury, exposure of
platelets to soluble agonists (such as thrombin
and ADP) or to matrix-bound adhesive proteins
(such as collagen and vWF) induces platelet
activation. A frequent consequence of platelet
activation is the concomitant activation of
ligand binding by the integrin aIIbb3 [Byzova
et al., 2000]. Under high shear flow rate, such as
in stenotic atherosclerotic arteries, initial plate-
let adhesion, and activation are dependent on
the interaction between subendothelium-bound
vWF and its receptor, the glycoprotein Ib-IX
(GPIb-IX) complex [McHugh et al., 2000;
Yokoyama et al., 2000]. GPIb-IX not only
mediates the physical adherence of platelets to
the site of vascular injury but also initiates
signal transduction, leading to the activation of
the platelet integrin aIIbb3 [Kirk et al., 2000;
Walton et al., 2000]. In addition, GPaIIb binds
thrombin and is required for the low-dose
thrombin-induced integrin activation and pla-
telet aggregation [Gadek et al., 2002].

Involvement of hydroxyl group phosphoryla-
tion of cytoplasmic serine, threonine, and
tyrosine has been described in signaling via a
and b integrin subunits [Kirk et al., 2000;
Woodside et al., 2001; Fagerholm et al., 2002].
The arginine-glycine-aspartic acid (RGD)-motif
has been shown to be the core recognition
sequence for many integrins, including avb3
and aIIbb3 [Hynes, 1992], and is present in a
variety of integrin ligands, including collagen,
fibronectin, and other extracellular matrix
proteins, blood-borne adhesive proteins, viral
coat proteins, bacterial membrane proteins,
proteins from the IgG superfamily, snake
venom proteins, and other integrins [Clark
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and Brugge, 1995]. Binding of the ligand RGD-
motif to an integrin may induce cytoplasmic
phosphorylation, conformational change, and
signaling via the conformationally modified
integrin molecule [Erb et al., 2001]. Besides
tyrosine phosphorylation, integrins have also
been reported to be phosphorylated on serine
and threonine in cytoplasmic domains of both a
and b subunits [Kirk et al., 2000; Fagerholm
et al., 2002; Han et al., 2003].

Modification of the b3 cytoplasmic domains
by tyrosine phosphorylation is known to be
involved in signaling events [Blystone et al.,
1996, 1997]. Threonine phosphorylation in the
b3-cytoplasmic domain is also known to block
outside-in signaling [Blystone et al., 1997].
Involvement of Thr758 in the cytoplasmic do-
main of the b3 subunit of aIIbb3 in controlling bi-
directional signaling events through interplay
of GlcNAc and phosphate is proposed. In addi-
tion, we suggest that an interplay of phosphate
and GlcNAc at Ser752 of the b3 subunit could
control the regulation of Src kinase activation.

This study was undertaken to explain the
multifunctional behavior of integrins based
on the modification potential of the protein,
particularly with reference to modifications at
hydroxyl groups of serine, threonine, and
tyrosine by phosphorylation and O-GlcNAc
modification. Computer-assisted studies are
therefore useful in determining protein func-
tion by assessing the modification potential of a
given protein. Several programs based on
artificial neural networks have been developed
to predict glyco-sylation and phosphorylation
sites in proteins with reliable accuracy [Blom
et al., 2004]. In most cases the prediction
accuracy is very high except when themodifica-
tion potential of a protein is marginally affected
by false negative prediction sites, that is, for
example, a Ser residue may have very high
predicted potential for phosphorylation and a
slightly lower potential than the threshold for
O-GlcNAc. This is indeed a false negative Yin
Yang site since both kinase and OGT may be
able to access a Ser to modify it by phosphate or
by O-GlcNAc, respectively.

MATERIALS AND METHODS

The sequence data used to predict phosphor-
ylation and glycosylation sites of the three
subunits of the human b3 integrin family were
obtained from the SWISS-PROT sequence

database. The sequences of the platelet integrin
subunit aIIb [Charo et al., 1986; Poncz et al.,
1987] (SWISS-PROT entry name ITAB_HU-
MAN and primary accession number P08514),
of subunit av [Suzuki et al., 1986; Xiong et al.,
2001] (SWISS-PROT entry name ITAV_HU-
MAN and primary accession number P06756),
and of subunit b3 (SWISS-PROT entry name
ITB3_HUMAN and primary accession number
P05106) were established in the late eighties
and early nineties [Fitzgerald et al., 1987; Jiang
et al., 1992]. All three sequences in the entry
contain a signal peptide, which is not part of the
mature expressed integrin. Different subunits
of integrins contain a signal peptide of different
length. In av the signal peptide is 30 amino
acids long. aIIb contains a signal peptide of 31
amino acids,while the b3 chain contains a signal
peptide of 26 amino acids in length. The
predictions were carried out on full precursor
sequence but the number of amino acids des-
cribed in the results correspond to the actual
integrin length without signal peptide. Graphs
of prediction results include the signal peptide
region. BLAST search was made using NCBI
database of non-redundant sequences [Altschul
et al., 1997] for human b3 integrin. The search
was made for all organisms’ sequences with
expect value set to 10 using blosum 62 matrix
and low-complexity filter selecting nr database.
A total of 1,298 hits were found. Eleven b3
sequences with highest bits score and zero
expect valuewere selected. Of the 11 sequences,
7 were from mammals including those of
human, mouse, rat, pig, dog, horse, and chim-
panzee (with more than 90% sequence simi-
larity), 1 from chicken, 1 from frog, and 1 from
fish. All the 11 sequences weremultiply aligned
using CLUSTALW [Thompson et al., 1994]. All
11proteins selected formultiple alignment from
BLAST search results are listed in Table I.

Glycosylation Prediction Methods

The methods used for predicting potential
glycosylation sites involved prediction of O-
linked and N-linked sites. The three methods
for predicting O-linked glycosylation sites
include NetOGlyc 2.0, 3.0, and 3.1 [Hansen
et al., 1998; Julenius et al., 2005], for O-
glycosylation sites in mucin type proteins (i.e.,
for O-GalNAc sites), DictyOGlyc 1.1 [Gupta
et al., 1999] for O-a-GlcNAc sites in eukaryotic
proteins and YinOYang 1.2 [Gupta et al., http://
www.cbs.dtu.dk/services/YinOYang/], that pre-
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dicts O-b-GlcNAc sites in eukaryotic proteins.
The NetNGlyc 1.0 [Gupta et al., http://www.
cbs.dtu.dk/services/NetNGlyc/] was used for
predicting N-glycosylation sites. These four
methods for predicting the glycosylation sites
are neural network based.

Phosphorylation Prediction Method

For prediction of phosphorylation sites in
integrins NetPhos2.0 [Blom et al., 1999, http://
www.cbs.dtu.dk/services/NetPhos/] was used.
The NetPhos2.0 is also a neural network-based
program designed by training the neural net-
works through protein phosphorylation data
from phosphobase 2.0.
Prediction methods described above are neu-

ral network-based and are designed by memor-
izing the known sequence environment data
of glycosylated/phosphorylated serine/threonine
and non-glycosylated/non-phosphorylated ser-
ine/threonine. A jury of networks is used to
evaluate the performance of neural networks.
The results obtained from all the networks are
sigmoidally arranged and averaged to obtain a
value between zero and one by these prediction
methods. Usually a threshold of 0.5 is used for
prediction, which means that a site with an
output of more than 0.5 is assigned as having a
potential to be glycosylated or phosphorylated.
YinOYang 1.2 employs a jury of neural net-

works on 40 experimentally determined O-b-
GlcNAc acceptor sites for recognizing the
sequence context and surface accessibility.
The number of non-acceptor serine/threonine
residues was reduced from 1,251 to 626. The
method [Gupta et al., http://www.cbs.dtu.dk/
services/YinOYang/] is efficient in a cross-
validation test as it correctly identifies 72.5%
of the glycosylated sites and 79.5% of the non-

glycosylated sites in the test set, verifying the
Matthews [1975] correlation coefficient of 0.22
on the original data, and 0.84 on the augmented
data set. The method has the capability to
predict the Yin Yang sites that can be glycosy-
lated and alternatively phosphorylated. Net-
Phos 2.0 predicts phosphorylation on the OH-
function of serine, threonine, or tyrosine resi-
dueswith a sensitivity range of 69%–96% [Blom
et al., 1999].

RESULTS

O-Glycosylation Sites

The results for O-glycosylation sites were
predicted by threemethods includingNetOGlyc
3.1 (for prediction of O-GalNAc sites), DictyO-
Glyc 1.1 (for prediction of O-a-GlcNAc sites),
andYinOYang 1.2 (for prediction ofO-b-GlcNAc
sites).

NetOGlyc 3.1 predicts proteinmodification by
O-GalNAc in mammalian proteins and has
been developed by training the artificial neural
networks through the sequence context of
glycosylated and non-glycosylated serines and
threo-nines. The results obtained for the pre-
diction of O-GalNAc sites in the three subunits
(aIIb, av, and b3) of platelet integrins showed
that both aIIb and av, as well as the b3 subunit
had no appreciable potential in their cytoplas-
mic domains for GalNAc addition.

The prediction results obtained by DictyO-
Glyc 1.1 forO-a-GlcNAc sites in human platelet
integrins showed that there were three poten-
tial sites forO-a-GlcNAcmodification in the aIIb
subunit at Ser 77, 876, and 878, whereas no
potential site was predicted for threonine of the
aIIb subunit. The av subunit had been predicted
to have the potential for O-a-GlcNAc modifica-

TABLE I. Sequences Selected for Multiple Alignments From Blast Search Results

Serial
number Species Database

Sequence ID/
accession
number

Blast results

E-value
Bits
score

Identity
(%)

1 Homo sapiens SWISSPROT ITB3_HUMAN 0.00 1,554 100
2 Pan troglodytes RefSeq XP_523684.1 0.00 1,490 93
3 Oryctolagus cuniculus GenBank AAD51955.1 0.00 1,478 94
4 Canis familaris GenBank AAD13680.1 0.00 1,475 95
5 Equus caballus GenBank AAK69529.1 0.00 1,462 94
6 Sus scrofa GenBank AAK69529.1 0.00 1,431 92
7 Mus musculus SWISSPROT ITB3_MOUSE 0.00 1,404 90
8 Rattus norvegicus EMBL CAD29521.1 0.00 1,402 89
9 Gallus gallus EMBL CAA51069.1 0.00 1,269 82

10 Xenopus laevis GenBank AAA17427.1 0.00 1,189 75
11 Tetraodon nigroviridis EMBL CAG02646 0.00 1,068 67
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tion at Ser1046 in its cytoplasmic domain and b3
subunit had no potential serine and threonine
residue for O-GlcNAc modification.

The prediction results obtained for O-b-
GlcNAc sites by YinOYang 1.2 showed that the
number of potentialO-b-GlcNAc sites among all
three types of O-linked modifications was high-
est (Fig. 1). The aIIb subunit is predicted to have
a total of 14 potential sites for O-b-GlcNAc
modifications at Ser; 130*, 168*, 248, 249, 503,
514*, 876, 964, and at Thr; 73, 327, 444, 607, and
646, with three Yin Yang sites marked by an
asterisk. The av subunit had been predicted to
have six potential sites forO-b-GlcNAcmodifca-
tion at Ser; 271, 429, 546, 757, 778* and at Thr;
602, with only one Yin Yang site marked by an
asterisk. The b3 subunit was found to have a
total of 13 potential sites for O-b-GlcNAc
modifications at Ser; 46, 85, 96*, 100, 104*,
110*, 123, 188*, 471, 699, and Thr; 33, 107, 276
with 4 Yin Yang sites marked by an asterisk.
Apart from all the above predicted sites, there
were a number of other Ser and Thr residues
that were very close to the threshold and were
likely to be modified by O-b-GlcNAc possibly
resulting in Yin Yang sites which were actually
false negative Yin Yang sites. For example, in
the b3 subunit Ser752 and Thr758 were very
close to the threshold and likely to be O-b-
GlcNAc modified. Thus, Ser752 and Thr758 in
the cytoplasmic domain of b3 have potential for
phosphorylation and could act as possible Yin
Yang sites (Fig. 1).Multiple sequence alignment
results also showed that Ser752 and Thr758
were conserved throughoutmammals and other
vertebrates (Fig. 2).

N-Glycosylation Sites

Prediction of N-glycosylation sites by NetN-
Glyc 1.0 showed that integrin has more poten-
tial for N-linked glycosylation as compared to
O-linked glycosylation. The a subunit has a
total of 37Asn out of 1,039 amino acids. Of these
37 Asn, 5 lie within the sequon Asn-Xaa-Ser/
Thr. The 18 other Asn residues, which do not lie
within the sequon N-Xaa-S/T could also be
modified by N-linked sugars. The av subunit
consists of 1,048 residues comprising 50 Asn. A
total of 13 Asn out of 50 were found within the
sequon Asn-Xaa-Ser/Thr, and 9 of these were
predicted for N-glycosylation. The b subunit is
composed of 788 amino acidswith a total 34Asn.
The Asn residues that are part of the sequon
Asn-Xaa-Ser/Thr are only seven and three of

them had potential to be glycosylated (Asn 346,
478, and 680), while the other four Asn (125,
397, 585, and 782) showed a negative score for
modification.

Phosphorylation Sites

UtilizingNetPhos 2.0, O-linked phosphoryla-
tion at serine and threonine was predicted. In
the aIIb subunit, there are 75 (7.21% of total
amino acids) serine, 37 (3.56% of total amino
acids) threonine, and 28 (2.69%) tyrosine resi-
dues (Fig. 2). Out of these 75 serine residues, 21
(26.25%)were found to be potentially phosphor-
ylatable, 4 (10.81%) threonine, and 10 (35.71%)
tyrosine residues also showed potential for
phosphorylation. The av subunit consists of 73
(6.96%) serine, 49 (4.6%) threonine, and 37
(3.53%) tyrosine residues. Of the 73 total serine
residues, 25 (34.24%) were predicted to have
potential for phosphorylation. Similarly, 6
(12.24%) of the total of 49 threonine residues,
and 9 (24.32%) of 37 tyrosine residues had
potential for phosphate modification. The b3
subunit of human platelet integrin possesses
63 (7.99%) serine, 47 (5.96%) threonine, and 27
(3.42%) tyrosine residues. There were 23
(36.50%) serine, 9 (19.10%) threonine, and 11
(40.74%) tyrosine residues with potential to be
phosphorylated (Fig. 2). Some other residues
were found very close to the threshold level, as
shown by the horizontal threshold line in
Figure 3 that were likely to be modified by
phosphate and appeared to be false negative
phosphorylation sites.

DISCUSSION

Protein chains are subjected to a variety of
modifications, of which some are co-transla-
tional (such as N-linked glycosylation). Impor-
tant amongst the post-translational modifi-
cations is the folding of the protein chain in its
distinctive three-dimensional structure. Pro-
teins are also subjected to other modifications,
such as chemicalmodifications of specific amino
acids, including glycosylation and phosphoryla-
tion. Such modifications significantly augment
the language of proteins. Lastly, the highest
level of protein organization occurs in the
quaternary structure. The important aspect of
protein organization is that each level of
organization is dependent on the lower levels,
and indeed the most important structural
features are dictated by the primary structure
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of the protein. A similar relation exists between
protein structure and function, and it can be
argued that function of a particular protein is
dictated by its unique three-dimensional struc-
ture, which is ultimately dictated by the
sequence of the protein. Additionally, certain
temporary conformational changes are induced

by amino acid modifications, such as GlcNAc or
phosphate substitution on the hydoxyl group of
Ser, Thr, or Tyr, which often result in signals for
regulating specific functions [Blystone et al.,
1997; Liu et al., 2004;Ranganathanet al., 2004].
Indeed these amino acid modifications depend
on the primary sequence, but they may also

Fig. 1. Graphic presentation of the potential of all Ser and Thr residues forO-GlcNAc modification in three
subunits of the beta-3 family of integrins (a), alphaV; (b), alpha IIb and (c), beta-3. There are residues other
than those crossing the threshold, very close to the threshold in the cytoplasmic domain of beta-3 (Ser752,
Thr758) that also show potential for phosphorylation, possible Yin Yang sites.
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depend on the location of the amino acid in the 3-
D structure. For example, a Ser having great
potential for phosphate or GlcNAc modification
may not be modified because of its location deep
inside the 3-D structure.

The anionic group modification in proteins
can result in conformational changes [Berlot
et al., 2002], leading to the creation of active
sites responsible for specific interactions with
proteins [Zaia et al., 2001]. Similarly, the
negative charge of a phosphate group or groups
[Varki and Kornfeld, 1980; Kornfeld and Mell-
man, 1989] alters the balance of non-covalent
interactions that determines secondary, ter-
tiary, or even quaternary structures. In view
of its capacity to alter the overall charge,
phosphorylation of proteins can induce confor-
mational changes in proteins [Yuan et al.,
2003]. The change in conformation of the
protein may result in altered biological func-
tion, resulting in either association or dissocia-
tion of subunits.

The O-GlcNAc modification is known to be
dynamic and analogous to phosphorylation
[Chou et al., 1992; Roquemore et al., 1996; Shafi
et al., 2000] that is, O-GlcNAc is a regulatory
modification just like protein phosphorylation.
Kearse and Hart [1991] established that the
changes in glycosylation (and phosphorylation)
were transient, returning to their basal level in
hours. The O-GlcNAc modification sites are
similar to the phosphorylation sites [Kearse
and Hart, 1991; Kelly et al., 1993; Chou et al.,
1995; Medina et al., 1998; Cheng and Hart,
2000], and an interplay between glycosylation
and phosphorylation is likely. The occurrence of
this phenomenon has been investigated in some
proteins, including RNA Pol II [Kelly et al.,
1993], estrogen receptor-b3, SV-40 large T-

antigen [Medina et al., 1998], and c-Myc proto-
oncogene [Chou et al., 1995]. This led to the
formulation of theYin-Yanghypothesis, accord-
ing to which O-GlcNAc modifications and
phosphorylations compete for the same site or
region on a protein backbone. Possible roles of
O-GlcNAc modification have been proposed
[O’Donnell, 2002], including prevention of
phosphorylation by occupying serine and threo-
nine residues at the sameposition or in the same
region, regulating protein function by blocking
phosphorylation-dependent signaling and con-
trolling protein–protein interactions, such as in
the formation of functional protein complexes.

Phosphorylations of Tyr, Ser, and Thr in the
cytoplasmic domains of integrins are important
in the regulation of inside-out signaling [Kirk
et al., 2000; Fagerholm et al., 2002; Han et al.,
2003]. The highly conserved cytoplasmic
domain of the b3 chain (Fig. 2) in vertebrates
stresses its functional importance in b3 integrin
family. Similarly, GlcNAc modification of Ser
and Thr in the conserved region of integrin
cytoplasmic domains may play equally signifi-
cant roles. Thus, it becomes mandatory to
investigate the possibility of O-GlcNAc-phos-
phate interplay in regulating b3 integrin func-
tion.

Theactual binding ofaIIbb3 oravb3 to ligand or
to RGD-containing peptides, or the addition of
Mn2þ, induces a conformational change that
increases the affinity for the binding of LIBS
(ligand-induced binding site) antibodies to
these b3 integrins [Frelinger et al., 1991]. One
consequence of this binding reaction could be
the phosphorylation of the cytoplasmic domain
of b3, which is necessary for subsequent steps in
the adhesion process [Blystone et al., 1996].
Binding of adhesion receptors to immobilized

Fig. 2. Multiple sequence alignment by CLUSTALW of 11 sequences of integrin beta-3 chain. The
alignment portion shown includes transmembrane region and cytoplasmic region. Ser752 and Thr758 are
highlighted by yellow that are conserved throughout all major groups of vertebrates.
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ligand is more complex to analyze, but has
distinct biological and biochemical conse-
quences that are not revealed by the soluble
ligand analyses [Garcia et al., 1999]. The
importance of the cytoskeletal connections to

b3 integrin cytoplasmic domains has been
reinforced by mutational analysis of the b3
cytoplasmic domain [Schaffner-Reckinger et al.,
1998]. Of particular interest are transgenic
knock-in experiments in which the tyrosines in

Fig. 3. Graphic presentation of the phosphorylation potential of Ser, Thr, and Tyr residues in three subunits
of the integrin beta-3 family (a), alphaV; (b), alpha IIb; and (c), beta-3. The cytoplasmic domain region of beta-
3 shows potential for Ser, Thr, and Tyr.
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the cytoplasmic domain of b3 were substituted
withphenylalanines.Thismutationdidnotaffect
the initial activation of aIIbb3 but caused a
rebleeding after wounding due to a defect in
the clot structure [Law et al., 1999]. Thus, the
cytoplasmic domain of b3 integrin seems to be
important for the strength of attachment of cells
or platelets through the extracellular domain of
b3 integrin to surface-bound ligands.

Although integrinaand b cytoplasmic tails are
devoid of catalytic activity, engagement of integ-
rins by extracellular matrix ligands triggers
outside-in signals that collaborate with growth
factor-initiated signals to determine cell fate and
function [Hynes, 2002].Aprominent biochemical
event required for integrin-dependent functional
responses is protein tyrosine phosphorylation
due to activation of Src and FAK family protein
tyrosine kinases [Hynes, 2002]. In the case of the
b3 integrins, aIIbb3 and aVb3, a pool of c-Src co-
immunoprecipitates with the integrin in non-
adherent osteoclasts and platelets and becomes
activated upon cell adhesion.

A familiar characteristic of several integrin b
subunits (b1, b3, b6, b7) is the occurrence of
conserved tyrosine residues in sequence con-
texts resembling that of known phospho-tyro-
sine binding (PTB) recognition sites, NXXY
[Van der Geer et al., 1995]. These sequences
arenecessary for theproper functioning ofaIIbb3
integrin in platelets [Law et al., 1999] and HEL
cells [Liu et al., 1996], and of avb3 integrin in
K562 cells [Blystone et al., 1997]. The phosphor-
ylation of b3 on tyrosine in activated platelets
[Law et al., 1996] and in avb3-transfected K562
cells [Blystone et al., 1996] correlates with the
binding of these cells to specific ligands.
Furthermore, it has been demonstrated that
phosphorylation of Tyr-747 and Tyr-759 in b3
integrins generates docking sites for signaling
molecules. The presence of Tyr-747 is also
necessary for other outside-in signaling events,
including focal adhesion kinase and paxillin
phosphorylation [Schaffner-Reckinger et al.,
1998]. Expression of mutated forms of aIIbb3
and avb3 in which the b3 cytoplasmic tyrosine
residues are replaced by phenylalanines blocks
outside-in signaling during formation of stable
platelet aggregates and clot retraction [Blys-
tone et al., 1997].

It has also been reported that b3 integrin is
stoichiometrically phosphorylated on Thr-753
following treatment of platelets with calyculin
A, a membrane-permeable inhibitor of protein

serine/threonine phosphatases [Blystone et al.,
1996]. Interestingly, this treatment also inhi-
bits outside-in signaling events. The phosphor-
ylation of b3 on Thr-753 may inhibit outside-in
signaling events by preventing the tyrosine
kinases fromphosphorylating b3 or, alternately,
by interfering with the binding of signaling
molecules to tyrosyl-phosphorylated b3. Simi-
larly, Thr phosphorylation in leukocyte integrin
(b2) also plays an important role in its adhesive
functions [Fagerholm et al., 2002].

The O-linked oligosaccharide chain in the
cytoplasmic domain of aIIb subunit of platelet
integrin aIIbb3 at Ser847 was shown to be
involved in the expression of this protein.
Similarly, O-GlcNAc modification of the cyto-
plasmic part of integral membrane proteins,
such as ankyrin G was reported to regulate the
signaling process. According to the prediction
results, Thr758 and Thr762 are both very close
to the threshold value and are likely to be
modified by GlcNAc (Fig. 1). Similarly, Thr758
also shows potential for phosphorylation,
whereas Thr762 shows very low potential for
phosphorylation; so Thr758 adjacent to Tyr759
can block outside-in signaling events as
described earlier for Thr753, which blocks
phosphorylation of Tyr747, when itself phos-
phorylated. Furthermore, Thr758 adjacent to
Tyr759 can act as a Yin Yang site for possible
interplay of phosphate withGlcNAc (Fig. 4).We
propose that interplay of phosphate with
GlcNAc at Thr758 (a Yin Yang site) may
regulate two-way signaling events during

Fig. 4. Three dimensional structure of the cytoplasmic domain
of beta-3 viewed and annotated on MolMol (molecular analysis
and molecular display) software, representing Ser752 in (a) and
Thr758 in (b) in ball and stick style. The hydroxyl groups of both
the residues are easily surface accessible by kinases and OGT for
acting as possible interplay sites in regulating the signaling
function of integrins.
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platelet aggregation and clot retraction. It has
already been described that threonine phos-
phorylation in the cytoplasmic domain of b3 in
aIIbb3 integrin results in different functional
controls: while it enhances inside-out signaling
following the exposure of fibrinogen/von Will-
ebrand factor binding sites [van Willigen et al.,
1996], it also inhibits outside-in integrin signal-
ing linked to cell spreading and cytoskeletal
rearrangements [Lerea et al., 1999]. Like
Tyr759, Thr758 also lies in the NXXY motif,
necessary for proper functioning of aIIbb3.
Thr758 may therefore regulate two-way signal-
ing events through the interplay of GlcNAc and
phosphate on this residue. When cytoplasmic
Thr758 is GlcNAc-modified, then outside-in sig-
naling in response to ligand binding is favored,
leading to phosphorylation of Tyr759 or Tyr747
and clot retraction. But when Thr758 is phos-
phorylated, outside-in signaling and phosphor-
ylation of Tyr759 or Tyr747 are inhibited.
Recently, a model for Src kinase activation by

direct interaction with the b3 cytoplasmic
domain was proposed by Arias-Salgado et al.
[2003]. These authors further demonstrated
that conversion of Ser752 to phenylalanine, a
mutation that prevents b3-mediated outside-in
signaling in platelets and osteoclasts [Chen
et al., 1994; Feng et al., 2001], completely
abolishes Src tyrosine interaction with the
integrin b3-tail [Arias-Salgado et al., 2003],
whereas substitution of tyrosines 747 and 759
with phenylalanines had no effect on the
interaction of aIIbb3 with c-Src [Arias-Salgado
et al., 2003]. These findings suggest an impor-
tant role of Ser752 in Src-kinase activation in
aIIbb3-mediated adhesion processes. According
to our prediction results, Ser752 shows more
potential for phosphorylation than the thresh-
old and is very likely to be modified by
phosphate (Fig. 3). Similarly, Ser752 also shows
potential for GlcNAc modification very close to
the threshold (Fig. 1). This residue can thus act
as a possible interplay site for phosphate and
GlcNAc in controlling Src kinase activation and
inactivation in the b3 cytoplasmic tails of aIIbb3
(Fig. 4).
The avb3 integrinwas previously considered a

promiscuous receptor involved in the adhesion
of many cell types to the extracellular matrix
and to other cells. But avb3 signaling may be
different for different ligands resulting in
unique cellular processes [Boettiger et al.,
2001]. For example, avb3-mediated adhesion to

vitronectin requires tyrosine phosphorylation
at Tyr747, Tyr759within the b3 cytoplasmic tail
and is dependent upon protein kinase C (PKC,
also known as Ser/Thr kinase) activation,
whereas avb3-mediated adhesion to fibronectin
is constitutive, requiring neither of these events
[Boettiger et al., 2001].

During normal flow, hematopoietic cells are
non-adhesive but when they encounter pro-
inflammatory or thrombotic signals, they exit
from the circulation by means of firm adhesion
to the vascular walls and migrate to the site of
inflammation. The capacity of hematopoietic
cells to control their adhesion-dependent extra-
vasation is mediated partially by the integrin
avb3 [Weerasinghe et al., 1998]. Firm adhesion
of vitronectin to integrin avb3 involves phos-
phorylation at Tyr747 and Tyr759, and activa-
tion of PKC, which may be followed by
phosphorylation of Ser752, Thr753, or Thr758
and regulation of inside-out signaling events.
Prediction results show that Ser752 andThr758
can act as possible false negativeYinYang sites.
Interplay of GlcNAc and phosphate at these
sites may also regulate signaling events antag-
onistically (Fig. 4). Surface contact and solvent
surface area calculations by MolMol [Koradi
et al., 1996] also showed that the hydroxyl
groups of Ser752 andThr758 (Fig. 4) are surface
accessible. Kinases and GlcNAc transferase
(OGT) can access and modify Ser752 and
Thr758, which are conserved in mammals and
other vertebrates (Fig. 2). Although other Ser
and Thr residues in the cytoplasmic domain of
b3 chain are conserved, they show very low
potential for both modifications. On the other
hand, Ser752 and Thr758 conserved residues in
mammals and other vertebrates (Fig. 2),
appeared to be false negative Yin Yang sites.
Both these residues show a positive phosphor-
ylation and O-GlcNAc modification potential
very close to the threshold and are therefore
unlikely to be false negative sites.

We, therefore, propose that GlcNAc and
phosphate modifications at Ser and Thr in the
cytoplasmic domain of b3 subunits of aIIbb3 and
avb3 integrins control two-way signal transduc-
tion events. The Ser752 and Thr758 of b3 are
possible interplay sites for GlcNAc and phos-
phate modification, which we propose to control
both outside-in and inside-out signaling events
(Fig. 4). These twomodificationsmay, therefore,
control signaling events, antagonistically block-
ing outside-in signaling events, and promoting
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inside-out signaling events and vice versa, as in
platelet aggregation during clot formation and
clot retraction. For instance, phosphorylation of
Thr758 may block the outside-in signals trig-
gered by ligand binding in the extracellular part
of aIIbb3 integrin that activate Src and FAK
protein tyrosine kinase to phosphorylate
Tyr747, and/or Tyr759 and prevent platelet
aggregation. Reciprocally, O-GlcNAc modifica-
tion of Thr758 would prevent its phosphoryla-
tion, leaving outside-in signals unperturbed
and promoting platelet aggregation. Similarly,
interplay of GlcNAc and phosphate at Ser752
could regulate Src kinase activation and inacti-
vation antagonistically. We expect these pre-
diction studies to accelerate our understanding
of the roles of co- and post-translational mod-
ifications in integrins as well as in proteins in
general, and hopefully lead to novel therapeutic
approaches for treatment of human diseases.
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